当前位置:首页 > 讯息 >

初二计算题100道及答案

  • 讯息
  • 2021-11-21

谈到计算题,大家都了解,有人问初二下册数学计算题100道及答案过程,另外,还有人问初二计算题100道及答案,这到底怎么回事呢?实际上二次根式计算题100道呢,下面是小编分享的初二计算题100道及答案,欢迎大家阅读!

初二计算题100道及答案

①5√8-2√32+√50

=5*3√2-2*4√2+5√2

=√2(15-8+5)

=12√2

②√6-√3/2-√2/3

=√6-√6/2-√6/3

=√6/6

③(√45+√27)-(√4/3+√125)

=(3√5+3√3)-(2√3/3+5√5)

=-2√5+7√5/3

④(√4a-√50b)-2(√b/2+√9a)

=(2√a-5√2b)-2(√2b/2+3√a)

=-4√a-6√2b

⑤√4x*(√3x/2-√x/6)

=2√x(√6x/2-√6x/6)

=2√x*(√6x/3)

=2/3*|x|*√6

⑥(x√y-y√x)÷√xy

=x√y÷√xy-y√x÷√xy

=√x-√y

⑦(3√7+2√3)(2√3-3√7)

=(2√3)^2-(3√7)^2

=12-63

=-51

⑧(√32-3√3)(4√2+√27)

=(4√2-3√3)(4√2+3√3)

=(4√2)^2-(3√3)^2

=32-27

=5

⑨(3√6-√4)

=(3√6)^2-2*3√6*√4+(√4)^2

=54-12√6+4

=58-12√6

⑩(1+√2-√3)(1-√2+√3)

=[1+(√2-√3)][1-(√2-√3)]

=1-(√2-√3)^2

=1-(2+3+2√6)

=-4-2√6

①5√8-2√32+√50 =5*3√2-2*4√2+5√2 =√2(15-8+5) =12√2 ②√6-√3/2-√2/3 =√6-√6/2-√6/3 =√6/6 ③(√45+√27)-(√4/3+√125) =(3√5+3√3)-(2√3/3+5√5) =-2√5+7√5/3 ④(√4a-√50b)-2(√b/2+√9a) =(2√a-5√2b)-2(√2b/2+3√a) =-4√a-6√2b ⑤√4x*(√3x/2-√x/6) =2√x(√6x/2-√6x/6) =2√x*(√6x/3) =2/3*|x|*√6 ⑥(x√y-y√x)÷√xy =x√y÷√xy-y√x÷√xy =√x-√y ⑦(3√7+2√3)(2√3-3√7) =(2√3)^2-(3√7)^2 =12-63 =-51 ⑧(√32-3√3)(4√2+√27) =(4√2-3√3)(4√2+3√3) =(4√2)^2-(3√3)^2 =32-27 =5 ⑨(3√6-√4)? =(3√6)^2-2*3√6*√4+(√4)^2 =54-12√6+4 =58-12√6 ⑩(1+√2-√3)(1-√2+√3) =[1+(√2-√3)][1-(√2-√3)] =1-(√2-√3)^2 =1-(2+3+2√6) =-4-2√6 (1)5√12×√18 =5*2√3*3√2 =30√6; (2)-6√45×(-4√48) =6*3√5*4*4√3 =288√15; (3)√(12a)×√(3a) /4 =√(36a^2)/4 =6a/4 =3a/2. 5. x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2 =[x(y+z)-y(x-z)]^2 =(xz+yz)^2 =z^2(x+y)^2 6. 3(a+2)^2+28(a+2)-20 =[3(a+2)-2][(a+2)+10] =(3a+4)(a+12) 7. (a+b)^2-(b-c)^2+a^2-c^2 =(a+b)^2-c^2+a^2-(b-c)^2 =(a+b+c)(a+b-c)+(a+b-c)(a-b+c) =(a+b-c)(a+b+c+a-b+c) =2(a+b-c)(a+c) 8. x(x+1)(x^2+x-1)-2 =(x^2+x)(x^2+x-1)-2 =(x^2+x)^2-(x^2+x)-2 =(x^2+x-2)(x^2+x+1) =(x+2)(x-1)(x^2+x+1) 9. 9x^2(x-1)^2-3(x^2-x)-56 =9x^2(x-1)^2-3x(x-1)-56 =[3x(x-1)-8][3x(x-1)+7] =(3x^2-3x-8)(3x^2-3x+7) 有理数练习 练习一(B级) (一)计算题: (1)23+(-73) (2)(-84)+(-49) (3)7+(-2.04) (4)4.23+(-7.57) (5)(-7/3)+(-7/6) (6)9/4+(-3/2) (7)3.75+(2.25)+5/4 (8)-3.75+(+5/4)+(-1.5) 5. x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2 =[x(y+z)-y(x-z)]^2 =(xz+yz)^2 =z^2(x+y)^2 6. 3(a+2)^2+28(a+2)-20 =[3(a+2)-2][(a+2)+10] =(3a+4)(a+12) 7. (a+b)^2-(b-c)^2+a^2-c^2 =(a+b)^2-c^2+a^2-(b-c)^2 =(a+b+c)(a+b-c)+(a+b-c)(a-b+c) =(a+b-c)(a+b+c+a-b+c) =2(a+b-c)(a+c) 8. x(x+1)(x^2+x-1)-2 =(x^2+x)(x^2+x-1)-2 =(x^2+x)^2-(x^2+x)-2 =(x^2+x-2)(x^2+x+1) =(x+2)(x-1)(x^2+x+1) 9. 9x^2(x-1)^2-3(x^2-x)-56 =9x^2(x-1)^2-3x(x-1)-56 =[3x(x-1)-8][3x(x-1)+7] =(3x^2-3x-8)(3x^2-3x+7) 1.125*3+125*5+25*3+25 2.9999*3+101*11*(101-92) 3.(23/4-3/4)*(3*6+2) 4. 3/7 × 49/9 - 4/3 5. 8/9 × 15/36 + 1/27 6. 12× 5/6 – 2/9 ×3 7. 8× 5/4 + 1/4 8. 6÷ 3/8 – 3/8 ÷6 9. 4/7 × 5/9 + 3/7 × 5/9 10. 5/2 -( 3/2 + 4/5 ) 11. 7/8 + ( 1/8 + 1/9 ) 12. 9 × 5/6 + 5/6 13. 3/4 × 8/9 - 1/3 14. 7 × 5/49 + 3/14 15. 6 ×( 1/2 + 2/3 ) 16. 8 × 4/5 + 8 × 11/5 17. 31 × 5/6 – 5/6 18. 9/7 - ( 2/7 – 10/21 ) 19. 5/9 × 18 – 14 × 2/7 20. 4/5 × 25/16 + 2/3 × 3/4 21. 14 × 8/7 – 5/6 × 12/15 22. 17/32 – 3/4 × 9/24 23. 3 × 2/9 + 1/3 24. 5/7 × 3/25 + 3/7 25. 3/14 ×× 2/3 + 1/6 26. 1/5 × 2/3 + 5/6 27. 9/22 + 1/11 ÷ 1/2 28. 5/3 × 11/5 + 4/3 29. 45 × 2/3 + 1/3 × 15 30. 7/19 + 12/19 × 5/6 31. 1/4 + 3/4 ÷ 2/3 32. 8/7 × 21/16 + 1/2 33. 101 × 1/5 – 1/5 × 21 34.50+160÷40 35.120-144÷18+35 36.347+45×2-4160÷52 37(58+37)÷(64-9×5) 38.95÷(64-45) 39.178-145÷5×6+42 40.812-700÷(9+31×11) 41.85+14×(14+208÷26) 43.120-36×4÷18+35 44.(58+37)÷(64-9×5) 45.(6.8-6.8×0.55)÷8.5 46.0.12× 4.8÷0.12×4.8 47.(3.2×1.5+2.5)÷1.6 48.6-1.6÷4= 5.38+7.85-5.37= 49.7.2÷0.8-1.2×5= 6-1.19×3-0.43= 50.6.5×(4.8-1.2×4)= 51.5.8×(3.87-0.13)+4.2×3.74 52.32.52-(6+9.728÷3.2)×2.5 53.[(7.1-5.6)×0.9-1.15] ÷2.5 54.5.4÷[2.6×(3.7-2.9)+0.62] 55.12×6÷(12-7.2)-6 56.12×6÷7.2-6 57.0.68×1.9+0.32×1.9 58.58+370)÷(64-45) 59.420+580-64×21÷28 60.136+6×(65-345÷23) 15-10.75×0.4-5.7 62.18.1+(3-0.299÷0.23)×1 63.(6.8-6.8×0.55)÷8.5 64.0.12× 4.8÷0.12×4.8 65.(3.2×1.5+2.5)÷1.6 66.3.2×6+(1.5+2.5)÷1.6 67.0.68×1.9+0.32×1.9 68.10.15-10.75×0.4-5.7 69.5.8×(3.87-0.13)+4.2×3.74 70.32.52-(6+9.728÷3.2)×2.5 71.[(7.1-5.6)×0.9-1.15] ÷2.5 72.5.4÷[2.6×(3.7-2.9)+0.62] 73.12×6÷(12-7.2)-6 74.12×6÷7.2-6 75.33.02-(148.4-90.85)÷2.5 1) 76.(25%-695%-12%)*36 77./4*3/5+3/4*2/5 78.1-1/4+8/9/7/9 79.+1/6/3/24+2/21 80./15*3/5 81.3/4/9/10-1/6 82./3+1/2)/5/6-1/3]/1/7 83./5+3/5/2+3/4 84.(2-2/3/1/2)]*2/5 85.+5268.32-2569 86.3+456-52*8 87.5%+6325 88./2+1/3+1/4 2) 89+456-78 3) 5%+. 3/7 × 49/9 - 4/3 4) 9 × 15/36 + 1/27 5) 2× 5/6 – 2/9 ×3 6) 3× 5/4 + 1/4 7) 94÷ 3/8 – 3/8 ÷6 8) 95/7 × 5/9 + 3/7 × 5/9 9) 6/2 -( 3/2 + 4/5 ) 10) 8 + ( 1/8 + 1/9 ) 11) 8 × 5/6 + 5/6 12) 1/4 × 8/9 - 1/3 13) 10 × 5/49 + 3/14 14) 1.5 ×( 1/2 + 2/3 ) 15) 2/9 × 4/5 + 8 × 11/5 16) 3.1 × 5/6 – 5/6 17) 4/7 - ( 2/7 – 10/21 ) 18) 19 × 18 – 14 × 2/7 19) 5 × 25/16 + 2/3 × 3/4 20) 4 × 8/7 – 5/6 × 12/15 21) 7/32 – 3/4 × 9/24 22) 1、 2/3÷1/2-1/4×2/5 2、 2-6/13÷9/26-2/3 3、 2/9+1/2÷4/5+3/8 4、 10÷5/9+1/6×4 5、 1/2×2/5+9/10÷9/20 6、 5/9×3/10+2/7÷2/5 7、 1/2+1/4×4/5-1/8 8、 3/4×5/7×4/3-1/2 9、 23-8/9×1/27÷1/27 10、 8×5/6+2/5÷4 11、 1/2+3/4×5/12×4/5 12、 8/9×3/4-3/8÷3/4 13、 5/8÷5/4+3/23÷9/11 23) 1.2×2.5+0.8×2.5 24) 8.9×1.25-0.9×1.25 25) 12.5×7.4×0.8 26) 9.9×6.4-(2.5+0.24)(27) 6.5×9.5+6.5×0.5 0.35×1.6+0.35×3.4 0.25×8.6×4 6.72-3.28-1.72 0.45+6.37+4.55 5.4+6.9×3-(25-2.5)2×41846-620-380 4.8×46+4.8×54 0.8+0.8×2.5 1.25×3.6×8×2.5-12.5×2.4 28×12.5-12.5×20 23.65-(3.07+3.65) (4+0.4×0.25)8×7×1.25 1.65×99+1.65 27.85-(7.85+3.4) 48×1.25+50×1.25×0.2×8 7.8×9.9+0.78 (1010+309+4+681+6)×12 3×9146×782×6×854 5.15×7/8+6.1-0.60625 1. 3/7 × 49/9 - 4/3 2. 8/9 × 15/36 + 1/27 3. 12× 5/6 – 2/9 ×3 4. 8× 5/4 + 1/4 5. 6÷ 3/8 – 3/8 ÷6 6. 4/7 × 5/9 + 3/7 × 5/9 7. 5/2 -( 3/2 + 4/5 ) 8. 7/8 + ( 1/8 + 1/9 ) 9. 9 × 5/6 + 5/6 10. 3/4 × 8/9 - 1/3 11. 7 × 5/49 + 3/14 12. 6 ×( 1/2 + 2/3 ) 13. 8 × 4/5 + 8 × 11/5 14. 31 × 5/6 – 5/6 15. 9/7 - ( 2/7 – 10/21 ) 16. 5/9 × 18 – 14 × 2/7 17. 4/5 × 25/16 + 2/3 × 3/4 18. 14 × 8/7 – 5/6 × 12/15 19. 17/32 – 3/4 × 9/24 20. 3 × 2/9 + 1/3 21. 5/7 × 3/25 + 3/7 22. 3/14 ×× 2/3 + 1/6 23. 1/5 × 2/3 + 5/6 24. 9/22 + 1/11 ÷ 1/2 25. 5/3 × 11/5 + 4/3 26. 45 × 2/3 + 1/3 × 15 27. 7/19 + 12/19 × 5/6 28. 1/4 + 3/4 ÷ 2/3 29. 8/7 × 21/16 + 1/2 30. 101 × 1/5 – 1/5 × 21 31.50+160÷40 (58+370)÷(64-45) 32.120-144÷18+35 33.347+45×2-4160÷52 34(58+37)÷(64-9×5) 35.95÷(64-45) 36.178-145÷5×6+42 420+580-64×21÷28 37.812-700÷(9+31×11) (136+64)×(65-345÷23) 38.85+14×(14+208÷26) 39.(284+16)×(512-8208÷18) 40.120-36×4÷18+35 41.(58+37)÷(64-9×5) 42.(6.8-6.8×0.55)÷8.5 43.0.12× 4.8÷0.12×4.8 44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6 45.6-1.6÷4= 5.38+7.85-5.37= 46.7.2÷0.8-1.2×5= 6-1.19×3-0.43= 47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9 48.10.15-10.75×0.4-5.7 49.5.8×(3.87-0.13)+4.2×3.74 50.32.52-(6+9.728÷3.2)×2.5 51.[(7.1-5.6)×0.9-1.15] ÷2.5 52.5.4÷[2.6×(3.7-2.9)+0.62] 53.12×6÷(12-7.2)-6 (4)12×6÷7.2-6 102×4.5 7.8×6.9+2.2×6.9 5.6×0.25 8×(20-1.25) 1)127+352+73+44 (2)89+276+135+33 (1)25+71+75+29 +88 (2)243+89+111+57 9405-2940÷28×21 920-1680÷40÷7 690+47×52-398 148+3328÷64-75 360×24÷32+730 2100-94+48×54 51+(2304-2042)×23 4215+(4361-716)÷81 (247+18)×27÷25 36-720÷(360÷18) 1080÷(63-54)×80 (528+912)×5-6178 8528÷41×38-904 264+318-8280÷69 (174+209)×26- 9000 814-(278+322)÷15 1406+735×9÷45 3168-7828÷38+504 796-5040÷(630÷7) 285+(3000-372)÷36 1+5/6-19/12 3x(-9)+7x(-9 (-54)x1/6x(-1/3) 1.18.1+(3-0.299÷0.23)×1 2.(6.8-6.8×0.55)÷8.5 3.0.12× 4.8÷0.12×4.8 4.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6 5.6-1.6÷4= 5.38+7.85-5.37= 6.7.2÷0.8-1.2×5= 6-1.19×3-0.43= 7.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9 8.10.15-10.75×0.4-5.7 9.5.8×(3.87-0.13)+4.2×3.74 10.32.52-(6+9.728÷3.2)×2.5 11.[(7.1-5.6)×0.9-1.15] ÷2.5 12.5.4÷[2.6×(3.7-2.9)+0.62] 13.12×6÷(12-7.2)-6 14.12×6÷7.2-6 15.33.02-(148.4-90.85)÷2.5 7×(5/21+9/714) a^3-2b^3+ab(2a-b) =a^3+2a^2b-2b^3-ab^2 =a^2(a+2b)-b^2(2b+a) =(a+2b)(a^2-b^2) =(a+2b)(a+b)(a-b) 2. (x^2+y^2)^2-4y(x^2+y^2)+4y^2 =(x^2+y^2-2y)^2 3. (x^2+2x)^2+3(x^2+2x)+x^2+2x+3 =(x^2+2x)^2+4(x^2+2x)+3 =(x^2+2x+3)(x^2+2x+1) =(x^2+2x+3)(x+1)^2 4. (a+1)(a+2)+(2a+1)(a-2)-12 =a^2+3a+2+2a^2-3a-2-12 =3a^2-12 =3(a+2)(a-2) 5. x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2 =[x(y+z)-y(x-z)]^2 =(xz+yz)^2 =z^2(x+y)^2 6. 3(a+2)^2+28(a+2)-20 =[3(a+2)-2][(a+2)+10] =(3a+4)(a+12) 7. (a+b)^2-(b-c)^2+a^2-c^2 =(a+b)^2-c^2+a^2-(b-c)^2 =(a+b+c)(a+b-c)+(a+b-c)(a-b+c) =(a+b-c)(a+b+c+a-b+c) =2(a+b-c)(a+c) 8. x(x+1)(x^2+x-1)-2 =(x^2+x)(x^2+x-1)-2 =(x^2+x)^2-(x^2+x)-2 =(x^2+x-2)(x^2+x+1) =(x+2)(x-1)(x^2+x+1) 写完一遍后再别这些题写一遍,以此类推,老师们看作业都是一看而过不会一个一个批的。

要初二上册物理计算题100道,含解答过程和答案 

一辆汽车沿平直公路朝山崖匀速行驶,在离山崖s1处鸣笛,汽车继续向前行驶,汽车离鸣笛处为s2时,司机刚好听到刚才鸣笛的回声,已知s1:s2=12:1,声音在空气中的传播速度是340m/s,求汽车行驶的速度的大小(在整个过程中,汽车一直在作匀速行驶;回声由山崖反射鸣笛声所形成)

解:因为s1:s2=12:1,

  所以S1=12S2声音传播的距离:

  声= 2S1-S2=2*12S2-S2=23S2,

  所用的时间:t=S声/v声=23S2/340

  因此车速:V车=S车/t= S2/(23S2/340)=340/23=14.78m/s

答:汽车行驶的速度为14.78m/s

一支队伍长50m,以5m每秒的速度通过一座长100m的桥,从第一人上桥到最后一人离开桥用了多少时间?

已知:v=5m/s,S队=50m,S桥=100m

求:t

解:t=S/v=(S+S)/v=(50m+100m)/5m/s=30s

答:从第一人上桥到最后一人离开桥用了30s的时间

甲。乙两地相距162km,汽车以10m/s的速度从甲地出发,行驶了72千米后,接着以45km/s的速度行驶到乙地,求汽车从甲到乙的平均速度

已知:S=162km,S1=72km v2=45km/h

求:全程的平均速度v解:10m/s=36km/hv=S/t=162/[72/36+(162-72)/45]=162/4=40.5(km/h)答:汽车从甲到乙的平均速度是40.5km/h

一列长200米的火车一54千米/时的速度通过一个长700米的山东需要多少时间?

答 4km/h=15m/s

t=s/v=(200+700)/15=60s

2.蝴蝶飞翔的速度是5米/秒,要非到距出发点0.6千米的花园,它要花多少时间?

答 t=s/v=600/5=120s

3.甲、乙两车在同一平直公路上同向形式,甲车速度为10千米/小时,乙车的速度是30千米/小时,乙车发现到追上甲车形式了15千米,求乙车发现甲车时两车相距多少千米

答 设相距X.

t=15/10=1.5s

30*1.5=10*1.5+X

4.甲乙两抵相距70千米,一辆汽车从甲地向乙地开出,速度是15米/秒,一辆自行车同时从乙地出发驶向甲地,他们在离甲地54千米处相遇.求自行车的速度是多少千米/时

答 15m/s=54km/h

t=54/54=1h

v=s/t=(70-54)/1=16m/s

5.一艘巡洋舰用70千米/小时的速度追赶在它前面10千米的一艘战斗舰,巡洋舰追了210千米,恰好赶上战斗舰,求战斗舰的速度.

答 t=s/v=210/70=3h

设速度为V

210=3*V+10

6 用一只玻璃杯、水和天平测定石子密度,实验记录如下:杯子装满水后的总质量m1=200g,放入石子后,杯子、水、石子总质量m2=215g,取出石子后,杯子和水的总质量为m3=190g,求石子密度。

答 m石=m2-m3=215g-190g=25g

v石=v水=倒出水的质量/倒出水的密度=200g-190g/1g/cm3=2.5g/cm3

7 甲乙两同学分别在一跟铁管2侧,铁管长153米,甲在其一端敲击了一下,乙同学听见了两次声音。已知听到两次声音的间隔为0.42秒。求声音在铁管中传播的速度。

解:T空=S空÷V空=153M÷340M/S=0.45S

T铁=T空-0.42S=0.45S-0.42S=0.03S

V铁=S÷T铁=153M÷0.03S=5100M/S

答:声音在铁管中传播速度为5100米/秒。

8 题目:有一山峡宽1200米,两旁都是竖直徒壁,有一人在山峡内放一枪,头两次回声间隔5秒,则人离两壁的距离是多少?(设声速v=340米/秒)

答案:1025米,175米。

解:设距离为s,1200-s

s/340-(1200-s)/340=1200

s=1025

9 有一山峡宽1200米,两旁都是峭壁。有人在山峡内放一枪,他听到头两次回声间隔5秒,求这个人离两峭壁的距离。(空气中声速为340m/s)

解:设人离一峭壁的距离为x,离另一峭壁的距离为1200-x

则声音到两峭壁并返回的时间分别为:2x/340,2(1200-x)/340.

由题意,2x/340-2(1200-x)/340=5

解得x=1025,1200-x=175

所以人离两峭壁的距离分别为1025米和175米。

10 一门反坦克炮瞄准一辆坦克,开炮后经过0.6s看到炮弹在坦克上爆炸,经过2.1s听到爆炸的声音,求大炮距坦克多元?炮弹的飞行速度多大?

距离S=2.1*340m=714m

答 飞行速度:v=S/t=714/0.6=1190m/s

1、 一块体积为100厘米3的冰块熔化成水后,体积如何改变,改变多少?

m = ρV = 100cm^3 * 0.9g/cm^3 =90g -------冰块的质量

V = m/ρ = 90g / 1g/cm^3 = 90cm^3 -------融化后质量不变,算出水的体积为90cm^3(90ml)

2、有一空瓶子质量是50克,装满水后称得总质量为250克,装满另一种液体称得总质量为200克,求这种液体的密度?

3、有一节油车,装满了30米3的石油,为了估算这节油车所装石油的质量,从中取出了30厘米3石油,称得质量是24.6克,问:这节油车所装石油质量是多少?

4、有一质量为5.4千克的铝球,体积是3000厘米3,试求这个铝球是实心还是空心?如果是空心,则空心部分体积多大?如果给空心部分灌一半水,则球的总质量是多大?

度的测量1、原理:2、量筒的使用用量筒可以直接测出液体的体积。测量固体的体积时,则需先倒入适量的水(放入物体后要能没过物体,又要不超最大测量范围),读出水面到达的刻度V1,再将物体放入并使其浸没,读出此时的读数V2,则该物体的体积为V=V2-V1,此种方法称为排水法。

例3 体积为30 cm3,质量为178g的空心铜球,如果在其空心部分铸满铝,问铝的质量为多少? 要求出空心部分铸满的铝的质量,可利用公式m=ρV求得,但这里的关键是求出铝的体积。根据题意可知,铝的体积等于铜球空心部分的体积,而空心部分的体积等于球的体积减去铜的体积。△V=V球-V铜=30×10-6 m3-2×10-5 m3=1×10-5 m3=V铝m铝=ρ铝V铝=2.7×103 kg/m3×1×10-5 m3=27g专题点评 本题的关键是先用铝的体积与空心部分的体积相等,再借助于密度的变形公式求出。

一个空瓶的质量是200g,装满水后总质量为700g.若先在瓶内装一些金属颗粒,使瓶和金属颗粒的总质量为878g,然后在瓶内再装水至满瓶,称出瓶的总质量为1318g,求金属颗粒的密度。要求出金属颗粒的密度,要找到它的质量m和体积V.质量在本题中是容易求出的,而体积有一定的难度,其关键是能想到金属颗粒的体积和前后两次所装水的体积差是相等的。 该瓶装满水后,水的质量为700g-200g=500g则该瓶的容积金属颗粒的质量m金=878g-200g=678g瓶内再装满水,水的质量m′水=1318g-878g=440g再次装满水,水的体积所以金属颗粒的体积V金=500 cm3-440 cm3=60 cm3金属颗粒的密度专题点评 本

例5 有一铜球,体积是20 cm3,质量是89g,问此球是空心还是实习的?若是空心的,在其空心部分注满水银,球的总质量是多少?(ρ铜=8.9×103 kg/m3,ρ水银=13.6×103 kg/m3,)判断物体是空心还是实心的,三种方法:(1) 比较密度,根据公式 ,求出ρ物与该物质的ρ比较,若ρ物<ρ,则为空心,若ρ物=ρ,则为实心。(2) 比较质量:把物体作为实习的,利用公式m=ρV,求出体积为V的实习物体的质量与球的实际质量相比较,若m>m物,则该物体是空心的,若m=m物,则该物体为实心的。(3) 比较体积:把物体作为实心的,利用公式 ,求出V,再与V物比较,若V<V物,则该物体为空心的,若V=V物,则该物体为实习的。(3)来解:因为 ,所以 ,则此铜球是空心的,空心部分体积为V空=V球-V=20 cm3-10 cm3=10 cm3,由于空心部分注满水银,所以V水银=V空=10 cm3,则球的总质量为m′球=m球+ρ水银V水银=89g+13.6×10g=225g.专题点评 本题采用比较体积的方法,主要是为了方便计算总质量。在解题时还应注意统一单位,在练习中更要注意通过一题多解来提高自

一、填空题1、一只瓶子装满水,水的体积为0.8×103 dm3,如果改用它来装酒精,最多能装 kg.若原瓶中的水倒出后全部结成冰,冰的体积比原来增大了 m3.(ρ酒精=0.8×103 kg/m3,ρ冰=0.9×103 kg/m3)

2、一空烧杯的质量为100g,倒进50 cm3的煤油后总质量为140g,则煤油的密度是___kg/cm3;若用掉 煤油,则剩下的煤油的质量是 g,密度是 g/cm3

1、一个瓶子的质量是0.2 kg,装满水时总质量为0.7 kg.当装满另一种液体时,总质量为0.8 kg,则:(1) 求此液体的密度;(2) 若用这个瓶子装密度为0.8 g/cm3的煤油,求最多可装多少千克的煤油。

2、一个质量为232g的铜铝合金球,其中含铝54g,铜的密度为ρ铜=8.9 g/cm3,铝的密度为ρ铝=2.7×103 kg/m3,求合金球的密度为多少?

参考答案一、1、640 0.089 (提示:水的体积知道,相当于瓶子的容积知道,在装入酒精的时候,酒精的密度知道,其体积等于瓶子的容积,由密度的公式可以求出酒精的质量;还可以求出水的质量,水结成冰后,质量没有变化,由于密度发生了变化,所以体积也会变化,由质量除以体积就可以得到冰的体积。)

用了多年的铅球,其表面磨损了一些,未发生变化的是铅球的()

A.质量 B.体积 C.密度 D.表面积

2.三个同样大小、质量相等的空心球,它们分别由铝、铁、铜制成( ),球的空心部分的体积是()

A.铝球最小B.铁球最小C.铜球最小D.都一样大

数学初二实数计算题及答案(一百道)

(1)99²-2.99² (2)80×3.5²+160×3.5×1.5+80×1.5² (3)181²-61²÷301²-181²

(4)5x-5y+5z (5)-5a²+25a-5a (6)2a(b+c)-3(b+c) (7)(ab+a)+(b+1)

(8)-4m³+16m³-28m (9)16x-25x³y² (10)36m²a-9m²a²-36m²

√32-3√1/2+√2

√12+√27/√3-√1/3×√12

√50+√30/√8-4

(√6-2√15)×√3-6√1/2

√2/3-4√216+43√1/6

√8+√30-√2

√40-5√1/10+√10

√2+√8/√2

√2/9+√50+√32

(1-√3)(√3+2)

(√8+3√6)÷√2-√3×√0.7

(-3+√6)(-3-√6)-(√3-1/√3)²

³√0.125-√3 1/16+³√(1-7/8)²

√2/3-√216+42√1/6

解方程√3 X-1=√2 X

求X

{√5 X-3√ Y=1}

{√3 X-√5 Y=2}

注:X全部不在根号内

√(1/2x)^2+10/9x^2

=√[1/(4x^2)+10/(9x^2)]

=√49/36x^2

若x>0,=7/(6x)

若x<0,=-7/(6x)

√a^4mb^2n+1

=√(a^2mb^n)^2+1

=a^2mb^n+1

√(4a^5+8a^4)(a^2+3a+2)

=√[4a^4(a+2)][(a+2)(a+1)]

=√[4a^4(a+2)^2(a+1)]

=2a^2(a+2)√(a+1)

. 3√(1/6)-4√(50)+30√(2/3)

答案3√(1/6)-4√(50)+30√(2/3)

= 3×√6/6-4×5√2+30×√6/3

=√6/2-20√2+10√6

2. (1-根号2)/2乘以(1+根号2)/2

题是这样的二分之一减根号2乘以二分之一加根号2

答案:(1-根号2)/2乘以(1+根号2)/2

=(1-√2)*(1-√2)/4

=(1-2)/4

=-1/4

1.3√(1/6)-4√(50)+30√(2/3) 答案3√(1/6)-4√(50)+30√(2/3) = 3×√6/6-4×5√2+30×√6/3 =√6/2-20√2+10√6 2. (1-根号2)/2乘以(1+根号2)/2 题是这样的二分之一减根号2乘以二分之一加根号2 答案:(1-根号2)/2乘以(1+根号2)/2 =(1-√2)*(1-√2)/4 =(1-2)/4 =-1/4 3.√(1/2x)^2+10/9x^2 √[(1/2x)^2+10/9x^2] =√(x^2/4+10x^2/9) =√(9x^2/36+40x^2/36) =√(49x^2/36) =7x/6; 4.√a^4mb^2n+1(a、b为正数) [√(a^4mb^2n)]+1(a、b为正数) =a^2mb^n+1; 5.√(4a^5+8a^4)(a^2+3a+2)(a>=0) √[(4a^5+8a^4)(a^2+3a+2)](a>=0) =√[4a^4(a+2)(a+2)(a+1)] =√[(2a^2)^2(a+2)^2(a+1)] =2a^2(a+2)√(a+1). 太多了呀,只能这样了,我还有事 您好! ①5√8-2√32+√50 =5*3√2-2*4√2+5√2 =√2(15-8+5) =12√2 ②√6-√3/2-√2/3 =√6-√6/2-√6/3 =√6/6 ③(√45+√27)-(√4/3+√125) =(3√5+3√3)-(2√3/3+5√5) =-2√5+7√5/3 ④(√4a-√50b)-2(√b/2+√9a) =(2√a-5√2b)-2(√2b/2+3√a) =-4√a-6√2b ⑤√4x*(√3x/2-√x/6) =2√x(√6x/2-√6x/6) =2√x*(√6x/3) =2/3*x*√6 ⑥(x√y-y√x)÷√xy =x√y÷√xy-y√x÷√xy =√x-√y ⑦(3√7+2√3)(2√3-3√7) =(2√3)^2-(3√7)^2 =12-63 =-51 ⑧(√32-3√3)(4√2+√27) =(4√2-3√3)(4√2+3√3) =(4√2)^2-(3√3)^2 =32-27 =5 ⑨(3√6-√4)² =(3√6)^2-2*3√6*√4+(√4)^2 =54-12√6+4 =58-12√6 ⑩(1+√2-√3)(1-√2+√3) =[1+(√2-√3)][1-(√2-√3)] =1-(√2-√3)^2 =1-(2+3+2√6) =-4-2√6 1. =5√5 - 1/25√5 - 4/5√5 =√5*(5-1/25-4/5) =24/5√5 2.=√144+576 =√720 =12√5 3.)√(8/13)^2-(2/13)^2 = √(8/13+2/13)(8/13-2/13) =(2/13)√15

求100道初二下学期数学计算题

1.因式分解(4a+5b)² - (5a-4b)²

2.因式分解 x² - y² + 10x + 25

3.化简后求值(1/2x+1/3y)² - (1/3x+1/2y)² - (5/6x+5/6y)(1/6x-1/6y)其中2¹º = x² = 4的y次方

4. (x-1)(x的n-1次方 + x的n-2次方 + x的n-3次方 +....+ x + 1)= x的n次方-1 例:(x-1)(x³ + x² + x + 1)=x的4次方

根据这一规律计算1 + 2 + 2² + 2³ + 2的4次方 + 2的5次方 ....+ 2的63次方

5.提取公因式

12x平方-12x平方y-3x平方y平方

6.平方差公式

3ax四次方-3ay四次方

7.完全平方公式

25m平方+64-80m

8.分组分解

3xy-2x-12y+8

9.十字相乘法

x四次方-7x平方y平方+6y四次方

分式:

加减 5x/(x+y)+y/(x+y)

乘除 b/(a平方-9)*(a+3)/(b平方-b)

混合 大括号a/(a-b)+b/(b-a)大括号*ab/(a-b)

1.因式分解x3+2x2+2x+1

2.因式分解a2b2-a2-b2+1

3.试用除法判别15x2+x-6是不是3x+2的倍式。

4.(1)判别3x+2是不是6x2+x-2的因式?(写出计算式)

(2)如果是,请因式分解6x2+x-2。

5.a=19912 ,b=9912 ,(1)求a2-2ab+b2之值? (2)a2-b2之值?

6.判别2x+1是否4x2+8x+3的因式?如果是,请因式分解4x2+8x+3。

7.因式分解(1)3ax2-2x+3ax-2 (2)(x2-3x)+(x-3)2+2x-6。

8.设6x2-13x+k为3x-2的倍式,求k之值。

9.判别3x是不是x2之因式?(要说明理由)

10.若-2x2+ax-12,能被2x-3整除,求 (1)a=? (2)将-2x2+ax-12因式分解。

11.(1)因式分解ab-cd+ad-bc

(2)利用(1)求1990×29-1991×71+1990×71-29×1991的值。

12.利用平方差公式求1992-992=?

13.利用乘法公式求(6712 )2-(3212 )2=?

14.因式分解下列各式:

(1)(2x+3)(x-2)+(x+1)(2x+3) (2)9x2-66x+121

15.请同学用曾经学过的各种不同因式分解的方法因式分解16x2-24x+9

(1)方法1: (2)方法2:

16.因式分解下列各式:

(1)4x2-25 (2)x2-4xy+4y2 (3)利用(1)(2)之方法求a2-b2+2bc-c2

17.因式分解

(1)8x2-18 (2)x2-(a-b)x-ab

18.因式分解下列各式

(1)9x4+35x2-4 (2)x2-y2-2yz-z2

(3)a(b2-c2)-c(a2-b2)

19.因式分解(2x+1)(x+1)+(2x+1)(x-3)

20.因式分解39x2-38x+8

21.利用因式分解求(6512 )2-(3412 )2之值

22.因式分解a(b2-c2)-c(a2-b2)

23.a、b、c是整数,若a2+b2+c2+4a-8b-14c+69=0,求a+2b-3c的值

24.因式分解7(x-1)2+4(x-1)(y+2)-20(y+2)2

25.因式分解xy2-2xy-3x-y2-2y-1

26.因式分解4x2-6ax+18a2

27.因式分解20a3bc-9a2b2c-20ab3c

28.因式分解2ax2-5x+2ax-5

29.因式分解4x3+4x2-25x-25

30.因式分解(1-xy)2-(y-x)2

31.因式分解

(1)mx2-m2-x+1 (2)a2-2ab+b2-1

32.因式分解下列各式

(1)5x2-45 (2)81x3-9x (3)x2-y2-5x-5y (4)x2-y2+2yz-z2

33.因式分解:xy2-2xy-3x-y2-2y-1

34.因式分解y2(x-y)+z2(y-x)

35.设x+1是2x2+ax-3的因式,(1)求a=? (2)求2x2+ax-3=0之二根

36.(1)因式分解x2+x+y2-y-2xy=?

(2)承(1)若x-y=99求x2+x+y2-y-2xy之值?

75÷〔138÷(100-54)〕 85×(95-1440÷24)

80400-(4300+870÷15) 240×78÷(154-115)

1437×27+27×563 〔75-(12+18)〕÷15

2160÷〔(83-79)×18〕 280+840÷24×5

325÷13×(266-250) 85×(95-1440÷24)

58870÷(105+20×2) 1437×27+27×563

81432÷(13×52+78) [37.85-(7.85+6.4)] ×30

156×[(17.7-7.2)÷3] (947-599)+76×64

36×(913-276÷23) [192-(54+38)]×67

[(7.1-5.6)×0.9-1.15]÷2.5 81432÷(13×52+78)

5.4÷[2.6×(3.7-2.9)+0.62] (947-599)+76×64 60-(9.5+28.9)]÷0.18 2.881÷0.43-0.24×3.5 20×[(2.44-1.8)÷0.4+0.15] 28-(3.4 1.25×2.4) 0.8×〔15.5-(3.21 5.79)〕 (31.8 3.2×4)÷5 194-64.8÷1.8×0.9 36.72÷4.25×9.9 3.416÷(0.016×35) 0.8×[(10-6.76)÷1.2]

(136+64)×(65-345÷23) (6.8-6.8×0.55)÷8.5

0.12× 4.8÷0.12×4.8 (58+37)÷(64-9×5)

812-700÷(9+31×11) (3.2×1.5+2.5)÷1.6

85+14×(14+208÷26) 120-36×4÷18+35

(284+16)×(512-8208÷18) 9.72×1.6-18.305÷7

4/7÷[1/3×(3/5-3/10)] (4/5+1/4)÷7/3+7/10

12.78-0÷( 13.4+156.6 ) 37.812-700÷(9+31×11) (136+64)×(65-345÷23) 3.2×(1.5+2.5)÷1.6

85+14×(14+208÷26) (58+37)÷(64-9×5)

(6.8-6.8×0.55)÷8.5 (284+16)×(512-8208÷18)

0.12× 4.8÷0.12×4.8 (3.2×1.5+2.5)÷1.6

120-36×4÷18+35 10.15-10.75×0.4-5.7

5.8×(3.87-0.13)+4.2×3.74 347+45×2-4160÷52

32.52-(6+9.728÷3.2)×2.5 87(58+37)÷(64-9×5)

[(7.1-5.6)×0.9-1.15] ÷2.5 (3.2×1.5+2.5)÷1.6

5.4÷[2.6×(3.7-2.9)+0.62] 12×6÷(12-7.2)-6

3.2×6+(1.5+2.5)÷1.6

5.8×(3.87-0.13)+4.2×3.74

33.02-(148.4-90.85)÷2.5

1、 提公因法

如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1、 分解因式x -2x -x(2003淮安市中考题)

x -2x -x=x(x -2x-1)

2、 应用公式法

由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

例2、分解因式a +4ab+4b (2003南通市中考题)

解:a +4ab+4b =(a+2b)

3、 分组分解法

要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)

例3、分解因式m +5n-mn-5m

解:m +5n-mn-5m= m -5m -mn+5n

= (m -5m )+(-mn+5n)

=m(m-5)-n(m-5)

=(m-5)(m-n)

4、 十字相乘法

对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)

例4、分解因式7x -19x-6

分析: 1 -3

7 2

2-21=-19

解:7x -19x-6=(7x+2)(x-3)

5、配方法

对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

例5、分解因式x +3x-40

解x +3x-40=x +3x+( ) -( ) -40

=(x+ ) -( )

=(x+ + )(x+ - )

=(x+8)(x-5)

6、拆、添项法

可以把多项式拆成若干部分,再用进行因式分解。

例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)

解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)

=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)

=c(c-a)(b+a)+b(a+b)(c-a)

=(c+b)(c-a)(a+b)

7、 换元法

有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

例7、分解因式2x -x -6x -x+2

解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x

=x [2(x + )-(x+ )-6

令y=x+ , x [2(x + )-(x+ )-6

= x [2(y -2)-y-6]

= x (2y -y-10)

=x (y+2)(2y-5)

=x (x+ +2)(2x+ -5)

= (x +2x+1) (2x -5x+2)

=(x+1) (2x-1)(x-2)

8、 求根法

令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )

例8、分解因式2x +7x -2x -13x+6

解:令f(x)=2x +7x -2x -13x+6=0

通过综合除法可知,f(x)=0根为 ,-3,-2,1

则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)

9、 图象法

令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )

例9、因式分解x +2x -5x-6

解:令y= x +2x -5x-6

作出其图象,见右图,与x轴交点为-3,-1,2

则x +2x -5x-6=(x+1)(x+3)(x-2)

10、 主元法

先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。

例10、分解因式a (b-c)+b (c-a)+c (a-b)

分析:此题可选定a为主元,将其按次数从高到低排列

解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)

=(b-c) [a -a(b+c)+bc]

=(b-c)(a-b)(a-c)

11、 利用特殊值法

将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。

例11、分解因式x +9x +23x+15

解:令x=2,则x +9x +23x+15=8+36+46+15=105

将105分解成3个质因数的积,即105=3×5×7

注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值

则x +9x +23x+15=(x+1)(x+3)(x+5)

12、待定系数法

首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

例12、分解因式x -x -5x -6x-4

分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。

解:设x -x -5x -6x-4=(x +ax+b)(x +cx+d)

= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd

所以 解得

则x -x -5x -6x-4 =(x +x+1)(x -2x-4

1- 14 x2

4x –2 x2 – 2

( x- y )3 –(y- x)

x2 –y2 – x + y

x2 –y2 -1 ( x + y) (x – y )

x2 + 1 x2 -2-( x -1x )2

a3-a2-2a

4m2-9n2-4m+1

3a2+bc-3ac-ab

9-x2+2xy-y2

2x2-3x-1

-2x2+5xy+2y2

10a(x-y)2-5b(y-x)

an+1-4an+4an-1

x3(2x-y)-2x+y

x(6x-1)-1

2ax-10ay+5by+6x

1-a2-ab-14 b2

a4+4

(x2+x)(x2+x-3)+2

x5y-9xy5

-4x2+3xy+2y2

4a-a5

2x2-4x+1

4y2+4y-5

3X2-7X+2

8xy(x-y)-2(y-x)3

x6-y6

x3+2xy-x-xy2

(x+y)(x+y-1)-12

4ab-(1-a2)(1-b2)

-3m2-2m+4

a2-a-6

2(y-z)+81(z-y)

9m2-6m+2n-n2

ab(c2+d2)+cd(a2+b2)

a4-3a2-4

x4+4y4

a2+2ab+b2-2a-2b+1

x2-2x-4

4x2+8x-1

2x2+4xy+y2

- m2 – n2 + 2mn + 1

(a + b)3d – 4(a + b)2cd+4(a + b)c2d

(x + a)2 – (x – a)2

–x5y – xy +2x3y

x6 – x4 – x2 + 1

(x +3) (x +2) +x2 – 9

(x –y)3 +9(x – y) –6(x – y)2

(a2 + b2 –1 )2 – 4a2b2

(ax + by)2 + (bx – ay)2

x2 + 2ax – 3a2

3a3b2c-6a2b2c2+9ab2c3

xy+6-2x-3y

x2(x-y)+y2(y-x)

2x2-(a-2b)x-ab

a4-9a2b2

ab(x2-y2)+xy(a2-b2)

(x+y)(a-b-c)+(x-y)(b+c-a)

a2-a-b2-b

(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2

(a+3)2-6(a+3)

(x+1)2(x+2)-(x+1)(x+2)2

35.因式分解x2-25= 。

36.因式分解x2-20x+100= 。

37.因式分解x2+4x+3= 。

38.因式分解4x2-12x+5= 。

39.因式分解下列各式:

(1)3ax2-6ax= 。

(2)x(x+2)-x= 。

(3)x2-4x-ax+4a= 。

(4)25x2-49= 。

(5)36x2-60x+25= 。

(6)4x2+12x+9= 。

(7)x2-9x+18= 。

(8)2x2-5x-3= 。

(9)12x2-50x+8= 。

40.因式分解(x+2)(x-3)+(x+2)(x+4)= 。

41.因式分解2ax2-3x+2ax-3= 。

42.因式分解9x2-66x+121= 。

43.因式分解8-2x2= 。

44.因式分解x2-x+14 = 。

45.因式分解9x2-30x+25= 。

46.因式分解-20x2+9x+20= 。

47.因式分解12x2-29x+15= 。

48.因式分解36x2+39x+9= 。

49.因式分解21x2-31x-22= 。

50.因式分解9x4-35x2-4= 。

51.因式分解(2x+1)(x+1)+(2x+1)(x-3)= 。

52.因式分解2ax2-3x+2ax-3= 。

53.因式分解x(y+2)-x-y-1= 。

54.因式分解(x2-3x)+(x-3)2= 。

55.因式分解9x2-66x+121= 。

56.因式分解8-2x2= 。

57.因式分解x4-1= 。

58.因式分解x2+4x-xy-2y+4= 。

59.因式分解4x2-12x+5= 。

60.因式分解21x2-31x-22= 。

61.因式分解4x2+4xy+y2-4x-2y-3= 。

62.因式分解9x5-35x3-4x= 。

63.因式分解下列各式:

(1)3x2-6x= 。

(2)49x2-25= 。

(3)6x2-13x+5= 。

(4)x2+2-3x= 。

(5)12x2-23x-24= 。

(6)(x+6)(x-6)-(x-6)= 。

(7)3(x+2)(x-5)-(x+2)(x-3)= 。

(8)9x2+42x+49= 。

(1)(x+2)-2(x+2)2= 。

(2)36x2+39x+9= 。

(3)2x2+ax-6x-3a= 。

(4)22x2-31x-21= 。

70.因式分解3ax2-6ax= 。

71.因式分解(x+1)x-5x= 。

72.因式分解(2x+1)(x-3)-(2x+1)(x-5)=

73.因式分解xy+2x-5y-10=

74.因式分解x2y2-x2-y2-6xy+4=

x3+2x2+2x+1

a2b2-a2-b2+1

(1)3ax2-2x+3ax-2

(x2-3x)+(x-3)2+2x-6

1)(2x+3)(x-2)+(x+1)(2x+3)

9x2-66x+121

17.因式分解

(1)8x2-18 (2)x2-(a-b)x-ab

18.因式分解下列各式

(1)9x4+35x2-4 (2)x2-y2-2yz-z2

(3)a(b2-c2)-c(a2-b2)

19.因式分解(2x+1)(x+1)+(2x+1)(x-3)

20.因式分解39x2-38x+8

21.利用因式分解求(6512 )2-(3412 )2之值

22.因式分解a(b2-c2)-c(a2-b2)

24.因式分解7(x-1)2+4(x-1)(y+2)-20(y+2)2

25.因式分解xy2-2xy-3x-y2-2y-1

26.因式分解4x2-6ax+18a2

27.因式分解20a3bc-9a2b2c-20ab3c

28.因式分解2ax2-5x+2ax-5

29.因式分解4x3+4x2-25x-25

30.因式分解(1-xy)2-(y-x)2

31.因式分解

(1)mx2-m2-x+1 (2)a2-2ab+b2-1

32.因式分解下列各式

(1)5x2-45 (2)81x3-9x (3)x2-y2-5x-5y (4)x2-y2+2yz-z2

33.因式分解:xy2-2xy-3x-y2-2y-1

34.因式分解y2(x-y)+z2(y-x)

1)因式分解x2+x+y2-y-2xy=

初二数学计算题附带答案

①5√8-2√32+√50

=5*3√2-2*4√2+5√2

=√2(15-8+5)

=12√2

②√6-√3/2-√2/3

=√6-√6/2-√6/3

=√6/6

③(√45+√27)-(√4/3+√125)

=(3√5+3√3)-(2√3/3+5√5)

=-2√5+7√5/3

④(√4a-√50b)-2(√b/2+√9a)

=(2√a-5√2b)-2(√2b/2+3√a)

=-4√a-6√2b

⑤√4x*(√3x/2-√x/6)

=2√x(√6x/2-√6x/6)

=2√x*(√6x/3)

=2/3*|x|*√6

⑥(x√y-y√x)÷√xy

=x√y÷√xy-y√x÷√xy

=√x-√y

⑦(3√7+2√3)(2√3-3√7)

=(2√3)^2-(3√7)^2

=12-63

=-51

⑧(√32-3√3)(4√2+√27)

=(4√2-3√3)(4√2+3√3)

=(4√2)^2-(3√3)^2

=32-27

=5

⑨(3√6-√4)?

=(3√6)^2-2*3√6*√4+(√4)^2

=54-12√6+4

=58-12√6

⑩(1+√2-√3)(1-√2+√3)

=[1+(√2-√3)][1-(√2-√3)]

=1-(√2-√3)^2

=1-(2+3+2√6)

=-4-2√6

(1)5√12×√18

=5*2√3*3√2

=30√6;

(2)-6√45×(-4√48)

=6*3√5*4*4√3

=288√15;

(3)√(12a)×√(3a) /4

=√(36a^2)/4

=6a/4

=3a/2.

5.

x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2

=[x(y+z)-y(x-z)]^2

=(xz+yz)^2

=z^2(x+y)^2

6.

3(a+2)^2+28(a+2)-20

=[3(a+2)-2][(a+2)+10]

=(3a+4)(a+12)

7.

(a+b)^2-(b-c)^2+a^2-c^2

=(a+b)^2-c^2+a^2-(b-c)^2

=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)

=(a+b-c)(a+b+c+a-b+c)

=2(a+b-c)(a+c)

8.

x(x+1)(x^2+x-1)-2

=(x^2+x)(x^2+x-1)-2

=(x^2+x)^2-(x^2+x)-2

=(x^2+x-2)(x^2+x+1)

=(x+2)(x-1)(x^2+x+1)

9.

9x^2(x-1)^2-3(x^2-x)-56

=9x^2(x-1)^2-3x(x-1)-56

=[3x(x-1)-8][3x(x-1)+7]

=(3x^2-3x-8)(3x^2-3x+7)

有理数练习

练习一(B级)

(一)计算题:

(1)23+(-73) (2)(-84)+(-49) (3)7+(-2.04) (4)4.23+(-7.57) (5)(-7/3)+(-7/6) (6)9/4+(-3/2) (7)3.75+(2.25)+5/4 (8)-3.75+(+5/4)+(-1.5)

5.

x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2

=[x(y+z)-y(x-z)]^2

=(xz+yz)^2

=z^2(x+y)^2

6.

3(a+2)^2+28(a+2)-20

=[3(a+2)-2][(a+2)+10]

=(3a+4)(a+12)

7.

(a+b)^2-(b-c)^2+a^2-c^2

=(a+b)^2-c^2+a^2-(b-c)^2

=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)

=(a+b-c)(a+b+c+a-b+c)

=2(a+b-c)(a+c)

8.

x(x+1)(x^2+x-1)-2

=(x^2+x)(x^2+x-1)-2

=(x^2+x)^2-(x^2+x)-2

=(x^2+x-2)(x^2+x+1)

=(x+2)(x-1)(x^2+x+1)

9.

9x^2(x-1)^2-3(x^2-x)-56

=9x^2(x-1)^2-3x(x-1)-56

=[3x(x-1)-8][3x(x-1)+7]

=(3x^2-3x-8)(3x^2-3x+7)

1.125*3+125*5+25*3+25

2.9999*3+101*11*(101-92)

3.(23/4-3/4)*(3*6+2)

4. 3/7 × 49/9 - 4/3

5. 8/9 × 15/36 + 1/27

6. 12× 5/6 – 2/9 ×3

7. 8× 5/4 + 1/4

8. 6÷ 3/8 – 3/8 ÷6

9. 4/7 × 5/9 + 3/7 × 5/9

10. 5/2 -( 3/2 + 4/5 )

11. 7/8 + ( 1/8 + 1/9 )

12. 9 × 5/6 + 5/6

13. 3/4 × 8/9 - 1/3

14. 7 × 5/49 + 3/14

15. 6 ×( 1/2 + 2/3 )

16. 8 × 4/5 + 8 × 11/5

17. 31 × 5/6 – 5/6

18. 9/7 - ( 2/7 – 10/21 )

19. 5/9 × 18 – 14 × 2/7

20. 4/5 × 25/16 + 2/3 × 3/4

21. 14 × 8/7 – 5/6 × 12/15

22. 17/32 – 3/4 × 9/24

23. 3 × 2/9 + 1/3

24. 5/7 × 3/25 + 3/7

25. 3/14 ×× 2/3 + 1/6

26. 1/5 × 2/3 + 5/6

27. 9/22 + 1/11 ÷ 1/2

28. 5/3 × 11/5 + 4/3

29. 45 × 2/3 + 1/3 × 15

30. 7/19 + 12/19 × 5/6

31. 1/4 + 3/4 ÷ 2/3

32. 8/7 × 21/16 + 1/2

33. 101 × 1/5 – 1/5 × 21

34.50+160÷40

35.120-144÷18+35

36.347+45×2-4160÷52

37(58+37)÷(64-9×5)

38.95÷(64-45)

39.178-145÷5×6+42

40.812-700÷(9+31×11)

41.85+14×(14+208÷26)

43.120-36×4÷18+35

44.(58+37)÷(64-9×5)

45.(6.8-6.8×0.55)÷8.5

46.0.12× 4.8÷0.12×4.8

47.(3.2×1.5+2.5)÷1.6

48.6-1.6÷4= 5.38+7.85-5.37=

49.7.2÷0.8-1.2×5= 6-1.19×3-0.43=

50.6.5×(4.8-1.2×4)=

51.5.8×(3.87-0.13)+4.2×3.74

52.32.52-(6+9.728÷3.2)×2.5

53.[(7.1-5.6)×0.9-1.15] ÷2.5

54.5.4÷[2.6×(3.7-2.9)+0.62]

55.12×6÷(12-7.2)-6

56.12×6÷7.2-6

57.0.68×1.9+0.32×1.9

58.58+370)÷(64-45)

59.420+580-64×21÷28

60.136+6×(65-345÷23)

15-10.75×0.4-5.7

62.18.1+(3-0.299÷0.23)×1

63.(6.8-6.8×0.55)÷8.5

64.0.12× 4.8÷0.12×4.8

65.(3.2×1.5+2.5)÷1.6

66.3.2×6+(1.5+2.5)÷1.6

67.0.68×1.9+0.32×1.9

68.10.15-10.75×0.4-5.7

69.5.8×(3.87-0.13)+4.2×3.74

70.32.52-(6+9.728÷3.2)×2.5

71.[(7.1-5.6)×0.9-1.15] ÷2.5

72.5.4÷[2.6×(3.7-2.9)+0.62]

73.12×6÷(12-7.2)-6

74.12×6÷7.2-6

75.33.02-(148.4-90.85)÷2.5

1) 76.(25%-695%-12%)*36

77./4*3/5+3/4*2/5

78.1-1/4+8/9/7/9

79.+1/6/3/24+2/21

80./15*3/5

81.3/4/9/10-1/6

82./3+1/2)/5/6-1/3]/1/7

83./5+3/5/2+3/4

84.(2-2/3/1/2)]*2/5

85.+5268.32-2569

86.3+456-52*8

87.5%+6325

88./2+1/3+1/4

2) 89+456-78

3) 5%+. 3/7 × 49/9 - 4/3

4) 9 × 15/36 + 1/27

5) 2× 5/6 – 2/9 ×3

6) 3× 5/4 + 1/4

7) 94÷ 3/8 – 3/8 ÷6

8) 95/7 × 5/9 + 3/7 × 5/9

9) 6/2 -( 3/2 + 4/5 )

10) 8 + ( 1/8 + 1/9 )

11) 8 × 5/6 + 5/6

12) 1/4 × 8/9 - 1/3

13) 10 × 5/49 + 3/14

14) 1.5 ×( 1/2 + 2/3 )

15) 2/9 × 4/5 + 8 × 11/5

16) 3.1 × 5/6 – 5/6

17) 4/7 - ( 2/7 – 10/21 )

18) 19 × 18 – 14 × 2/7

19) 5 × 25/16 + 2/3 × 3/4

20) 4 × 8/7 – 5/6 × 12/15

21) 7/32 – 3/4 × 9/24

22) 1、 2/3÷1/2-1/4×2/5

2、 2-6/13÷9/26-2/3

3、 2/9+1/2÷4/5+3/8

4、 10÷5/9+1/6×4

5、 1/2×2/5+9/10÷9/20

6、 5/9×3/10+2/7÷2/5

7、 1/2+1/4×4/5-1/8

8、 3/4×5/7×4/3-1/2

9、 23-8/9×1/27÷1/27

10、 8×5/6+2/5÷4

11、 1/2+3/4×5/12×4/5

12、 8/9×3/4-3/8÷3/4

13、 5/8÷5/4+3/23÷9/11

23) 1.2×2.5+0.8×2.5

24) 8.9×1.25-0.9×1.25

25) 12.5×7.4×0.8

26) 9.9×6.4-(2.5+0.24)(27) 6.5×9.5+6.5×0.5

0.35×1.6+0.35×3.4

0.25×8.6×4

6.72-3.28-1.72

0.45+6.37+4.55

5.4+6.9×3-(25-2.5)2×41846-620-380

4.8×46+4.8×54

0.8+0.8×2.5

1.25×3.6×8×2.5-12.5×2.4

28×12.5-12.5×20

23.65-(3.07+3.65)

(4+0.4×0.25)8×7×1.25

1.65×99+1.65

27.85-(7.85+3.4)

48×1.25+50×1.25×0.2×8

7.8×9.9+0.78

(1010+309+4+681+6)×12

3×9146×782×6×854

5.15×7/8+6.1-0.60625

1. 3/7 × 49/9 - 4/3

2. 8/9 × 15/36 + 1/27

3. 12× 5/6 – 2/9 ×3

4. 8× 5/4 + 1/4

5. 6÷ 3/8 – 3/8 ÷6

6. 4/7 × 5/9 + 3/7 × 5/9

7. 5/2 -( 3/2 + 4/5 )

8. 7/8 + ( 1/8 + 1/9 )

9. 9 × 5/6 + 5/6

10. 3/4 × 8/9 - 1/3

11. 7 × 5/49 + 3/14

12. 6 ×( 1/2 + 2/3 )

13. 8 × 4/5 + 8 × 11/5

14. 31 × 5/6 – 5/6

15. 9/7 - ( 2/7 – 10/21 )

16. 5/9 × 18 – 14 × 2/7

17. 4/5 × 25/16 + 2/3 × 3/4

18. 14 × 8/7 – 5/6 × 12/15

19. 17/32 – 3/4 × 9/24

20. 3 × 2/9 + 1/3

21. 5/7 × 3/25 + 3/7

22. 3/14 ×× 2/3 + 1/6

23. 1/5 × 2/3 + 5/6

24. 9/22 + 1/11 ÷ 1/2

25. 5/3 × 11/5 + 4/3

26. 45 × 2/3 + 1/3 × 15

27. 7/19 + 12/19 × 5/6

28. 1/4 + 3/4 ÷ 2/3

29. 8/7 × 21/16 + 1/2

30. 101 × 1/5 – 1/5 × 21

31.50+160÷40 (58+370)÷(64-45)

32.120-144÷18+35

33.347+45×2-4160÷52

34(58+37)÷(64-9×5)

35.95÷(64-45)

36.178-145÷5×6+42 420+580-64×21÷28

37.812-700÷(9+31×11) (136+64)×(65-345÷23)

38.85+14×(14+208÷26)

39.(284+16)×(512-8208÷18)

40.120-36×4÷18+35

41.(58+37)÷(64-9×5)

42.(6.8-6.8×0.55)÷8.5

43.0.12× 4.8÷0.12×4.8

44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6

45.6-1.6÷4= 5.38+7.85-5.37=

46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=

47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9

48.10.15-10.75×0.4-5.7

49.5.8×(3.87-0.13)+4.2×3.74

50.32.52-(6+9.728÷3.2)×2.5

51.[(7.1-5.6)×0.9-1.15] ÷2.5

52.5.4÷[2.6×(3.7-2.9)+0.62]

53.12×6÷(12-7.2)-6 (4)12×6÷7.2-6

102×4.5

7.8×6.9+2.2×6.9

5.6×0.25

8×(20-1.25)

1)127+352+73+44 (2)89+276+135+33

(1)25+71+75+29 +88 (2)243+89+111+57

9405-2940÷28×21

920-1680÷40÷7

690+47×52-398

148+3328÷64-75

360×24÷32+730

2100-94+48×54

51+(2304-2042)×23

4215+(4361-716)÷81

(247+18)×27÷25

36-720÷(360÷18)

1080÷(63-54)×80

(528+912)×5-6178

8528÷41×38-904

264+318-8280÷69

(174+209)×26- 9000

814-(278+322)÷15

1406+735×9÷45

3168-7828÷38+504

796-5040÷(630÷7)

285+(3000-372)÷36

1+5/6-19/12

3x(-9)+7x(-9

(-54)x1/6x(-1/3)

1.18.1+(3-0.299÷0.23)×1

2.(6.8-6.8×0.55)÷8.5

3.0.12× 4.8÷0.12×4.8

4.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6

5.6-1.6÷4= 5.38+7.85-5.37=

6.7.2÷0.8-1.2×5= 6-1.19×3-0.43=

7.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9

8.10.15-10.75×0.4-5.7

9.5.8×(3.87-0.13)+4.2×3.74

10.32.52-(6+9.728÷3.2)×2.5

11.[(7.1-5.6)×0.9-1.15] ÷2.5

12.5.4÷[2.6×(3.7-2.9)+0.62]

13.12×6÷(12-7.2)-6

14.12×6÷7.2-6

15.33.02-(148.4-90.85)÷2.5

7×(5/21+9/714)

a^3-2b^3+ab(2a-b)

=a^3+2a^2b-2b^3-ab^2

=a^2(a+2b)-b^2(2b+a)

=(a+2b)(a^2-b^2)

=(a+2b)(a+b)(a-b)

2.

(x^2+y^2)^2-4y(x^2+y^2)+4y^2

=(x^2+y^2-2y)^2

3.

(x^2+2x)^2+3(x^2+2x)+x^2+2x+3

=(x^2+2x)^2+4(x^2+2x)+3

=(x^2+2x+3)(x^2+2x+1)

=(x^2+2x+3)(x+1)^2

4.

(a+1)(a+2)+(2a+1)(a-2)-12

=a^2+3a+2+2a^2-3a-2-12

=3a^2-12

=3(a+2)(a-2)

5.

x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2

=[x(y+z)-y(x-z)]^2

=(xz+yz)^2

=z^2(x+y)^2

6.

3(a+2)^2+28(a+2)-20

=[3(a+2)-2][(a+2)+10]

=(3a+4)(a+12)

7.

(a+b)^2-(b-c)^2+a^2-c^2

=(a+b)^2-c^2+a^2-(b-c)^2

=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)

=(a+b-c)(a+b+c+a-b+c)

=2(a+b-c)(a+c)

8.

x(x+1)(x^2+x-1)-2

=(x^2+x)(x^2+x-1)-2

=(x^2+x)^2-(x^2+x)-2

=(x^2+x-2)(x^2+x+1)

=(x+2)(x-1)(x^2+x+1)

写完一遍后再别这些题写一遍,以此类推,老师们看作业都是一看而过不会一个一个批的。

要初二计算题100道

一元一次方程

选择题

1.已知(x+y)∶(x-y)=3∶1,则x∶y=( )。

A、3∶1 B、2∶1 C、1∶1 D、1∶2

2.方程-2x+ m=-3的解是3,则m的值为( )。

A、6 B、-6 C、 D、-18

3.在方程6x+1=1,2x= ,7x-1=x-1,5x=2-x中解为 的方程个数是( )。

A、1个 B、2个 C、3个 D、4个

4.根据“a的3倍与-4绝对值的差等于9”的数量关系可得方程( )。

A、|3a-(-4)|=9 B、|3a-4|=9

C、3|a|-|-4|=9 D、3a-|-4|=9

5.若关于x的方程 =4(x-1)的解为x=3,则a的值为( )。

A、2 B、22 C、10 D、-2

答案与解析

答案:1、B 2、A 3、B 4、D 5、C

解析:

1.分析:本题考查对等式进行恒等变形。

由(x+y)∶(x-y)=3∶1,知x+y=3(x-y),化简得:x+y=3x-3y,

得2x-4y=0,即x=2y,x∶y=2∶1。

2.分析:∵ 3是方程-2x+ m=-3的解,

∴ -2×3+ m=-3,

即-6+ m=-3,

∴ m=-3+6,——根据等式的基本性质1

∴ m=6,——根据等式的基本性质2

∴ 选A。

3.分析:6x+1=1的解是0,2x= 的解是 ,7x-1=x-1的解是0,5x=2-x的解是 。

4.略。

5.分析:因为x=3是方程 =4(x-1)的解,故将x=3代入方程满足等式。

一、 多变量型

多变量型一元一次方程解应用题是指在题目往往有多个未知量,多个相等关系的应用题。这些未知量只要设其中一个为x,其他未知量就可以根据题目中的相等关系用含有x的代数式来表示,再根据另一个相等关系列出一个一元一次方程即可。

例一:(2005年北京市人教)夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施。某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度。求只将温度调高1℃后两种空调每天各节电多少度?

分析:本题有四个未知量:调高温度后甲空调节电量、调高温度后乙空调节电量、清洗设备后甲空调节电量、清洗设备后乙空调节电量。相等关系有调高温度后甲空调节电量-调高温度后乙空调节电量=27、清洗设备后乙空调节电量=1.1×调高温度后乙空调节电量、调高温度后甲空调节电量=清洗设备后甲空调节电量、清洗设备后甲空调节电量+清洗设备后乙空调节电量=405。根据前三个相等关系用一个未知数设出表示出四个未知量,然后根据最后一个相等关系列出方程即可。

解:设只将温度调高1℃后,乙种空调每天节电x度,则甲种空调每天节电 度。依题意,得:

解得:

答:只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度。

二、 分段型

分段型一元一次方程的应用是指同一个未知量在不同的范围内的限制条件不同的一类应用题。解决这类问题的时候,我们先要确定所给的数据所处的分段,然后要根据它的分段合理地解决。

例二:(2005年东营市)某水果批发市场香蕉的价格如下表:

购买香蕉数

(千克) 不超过

20千克 20千克以上

但不超过40千克 40千克以上

每千克价格 6元 5元 4元

张强两次共购买香蕉50千克(第二次多于第一次),共付出264元, 请问张强第一次、第二次分别购买香蕉多少千克?

分析:由于张强两次共购买香蕉50千克(第二次多于第一次),那么第二次购买香蕉多于25千克,第一次少于25千克。由于50千克香蕉共付264元,其平均价格为5.28元,所以必然第一次购买香蕉的价格为6元/千克,即少于20千克,第二次购买的香蕉价格可能5元,也可能4元。我们再分两种情况讨论即可。

解:

1) 当第一次购买香蕉少于20千克,第二次香蕉20千克以上但不超过40千克的时候,设第一次购买x千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:

6x+5(50-x)=264

解得:x=14

50-14=36(千克)

2)当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,设第一次购买x千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:

6x+4(50-x)=264

解得:x=32(不符合题意)

答:第一次购买14千克香蕉,第二次购买36千克香蕉

例三:(2005年湖北省荆门市)参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1100元,那么此人住院的医疗费是( )

住院医疗费(元) 报销率(%)

不超过500元的部分 0

超过500~1000元的部分 60

超过1000~3000元的部分 80

……

A、1000元 B、1250元 C、1500元 D、2000元

解:设此人住院费用为x元,根据题意得:

500×60%+(x-1000)80%=1100

解得:x=2000

所以本题答案D。

三、 方案型

方案型一元一次方程解应用题往往给出两个方案计算同一个未知量,然后用等号将表示两个方案的代数式连结起来组成一个一元一次方程。

例四:(2005年泉州市)某校初三年级学生参加社会实践活动,原计划租用30座客车若干辆,但还有15人无座位。

(1)设原计划租用30座客车x辆,试用含x的代数式表示该校初三年级学生的总人数;

(2)现决定租用40座客车,则可比原计划租30座客车少一辆,且所租40座客车中有一辆没有坐满,只坐35人。请你求出该校初三年级学生的总人数。

分析:本题表示初三年级总人数有两种方案,用30座客车的辆数表示总人数:30x+15

用40座客车的辆数表示总人数:40(x-2)+35。

解:(1)该校初三年级学生的总人数为:30x+15

(2)由题意得:

30x+15=40(x-2)+35

解得:x=6

30x+15=30×6+15=195(人)

答:初三年级总共195人。

四、 数据处理型

数据处理型一元一次方程解应用题往往不直接告诉我们一些条件,需要我们对所给的数据进行分析,获取我们所需的数据。

例五:(2004年北京海淀区)解应用题:2004年4月我国铁路第5次大提速.假设K120次空调快速列车的平均速度提速后比提速前提高了44千米/时,提速前的列车时刻表如下表所示:

行驶区间 车次 起始时刻 到站时刻 历时 全程里程

A地—B地 K120 2:00 6:00 4小时 264千米

请你根据题目提供的信息填写提速后的列车时刻表,并写出计算过程.

行驶区间 车次 起始时刻 到站时刻 历时 全程里程

A地—B地 K120 2:00 264千米

解:

行驶区间 车次 起始时刻 到站时刻 历时 全程里程

A地—B地 K120 2:00 4:24 2.4小时 264千米

分析:通过表一我们可以得知提速前的火车速度为264÷4=66千米/时,从而得出提速后的速度,再根据表二已经给的数据,算出要求的值。

解:设列车提速后行驶时间为x小时. 根据题意,得

经检验,x=2.4符合题意.

答:到站时刻为4:24,历时2.4小时

例六:(2005浙江省)据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1 500千米,全程参考价为180元.下表是沿途各站至H站的里程数:

车站名 A B C D E F G H

各站至H站的里程数(单位:千米) 1500 1130 910 622 402 219 72 0

例如,要确定从B站至E站火车票价,其票价为 (元).

(1) 求A站至F站的火车票价(结果精确到1元);

(2) 旅客王大妈乘火车去女儿家,上车过两站后拿着火车票问乘务员:我快到站了吗?乘务员看到王大妈手中票价是66元,马上说下一站就到了.请问王大妈是在哪一站下车的?(要求写出解答过程).

解: (1) 解法一:由已知可得 .

A站至F站实际里程数为1500-219=1281.

所以A站至F站的火车票价为 0.12 1281=153.72 154(元)

解法二:由已知可得A站至F站的火车票价为 (元).

(2)设王大妈实际乘车里程数为x千米,根据题意,得: .

解得 x= (千米).

对照表格可知, D站与G站距离为550千米,所以王大妈是D站或G站下的车.

代数第六章能力自测题

一元一次不等式和一元一次不等式组

初中数学网站http://emath.126.com

分式方程

(一)填空

关于y的方程是_____.

(二)选择

A.x=-3; B.x≠-3;

C.一切实数; D.无解.

C.无解; D.一切实数.

A.x=0; B.x=0,x=1;

C.x=0,x=-1; D.代数式的值不可能为零.

A.a=5; B.a=10;

C.a=10; D.a=15.

A.a=-2; B.a=2;

C.a=1; D.a=-1.

A.一切实数; B.x≠7的一切实数;

C.无解; D.x≠-1,7的一切实数.

A.a=2; B.a只为4;

C.a=4或0; D.以上答案都不对.

A.a>0; B.a>0且a≠1;

C.a>0且a≠0; D.a<0.

A.a<0; B.a<0或a=1;

C.a<0或a=2; D.a>0.

(三)解方程

51.甲、乙两人同时从A地出发,步行30千米到B地甲比乙每小时多走1千米,结果甲比乙早到1小时,两人每小时各走多少千米?

二次根式计算题100道带答案

①5√8-2√32+√50 =5*3√2-2*4√2+5√2 =√2(15-8+5) =12√2 ②√6-√3/2-√2/3 =√6-√6/2-√6/3 =√6/6 ③(√45+√27)-(√4/3+√125) =(3√5+3√3)-(2√3/3+5√5) =-2√5+7√5/3 ④(√4a-√50b)-2(√b/2+√9a) =(2√a-5√2b)-2(√2b/2+3√a) =-4√a-6√2b ⑤√4x*(√3x/2-√x/6) =2√x(√6x/2-√6x/6) =2√x*(√6x/3) =2/3*|x|*√6 ⑥(x√y-y√x)÷√xy =x√y÷√xy-y√x÷√xy =√x-√y ⑦(3√7+2√3)(2√3-3√7) =(2√3)^2-(3√7)^2 =12-63 =-51 ⑧(√32-3√3)(4√2+√27) =(4√2-3√3)(4√2+3√3) =(4√2)^2-(3√3)^2 =32-27 =5 ⑨(3√6-√4)2 =(3√6)^2-2*3√6*√4+(√4)^2 =54-12√6+4 =58-12√6 ⑩(1+√2-√3)(1-√2+√3) =[1+(√2-√3)][1-(√2-√3)] =1-(√2-√3)^2 =1-(2+3+2√6) =-4-2√6

求初二实数计算题100道

就这些了!!额!!好累啊!!

若方程x^2+px+q=0(p,q为常数,p^2-4q>0)的两根为x1,x2,则x1+x2=_______,x1*x2=_______.

2.已知方程x^2-5x+3=0的两个根为x1,x2,计算下列各式的值(不解方程)

(1)x1+x2;

(2)x1*x2;

(3)1/x1+1/x2;

(4)x1^2+x2^2.

随堂作业—基础达标

1.如果方程ax^2+bx+c=0(a=/0)的两根是x1,x2,那么x1+x2=________,x1*x2=________.

2.已知x1,x2是方程2x^2+3x-4=0的两个根,那么x1+x2=________;x1*x2=_______;1/x1+1/x2=________;x1^2+x2^2=________;(x1+1)(x2+1)=___________.

3.已知一元二次方程2x^2-3x-1=0的两根为x1,x2,则x1+x2=________.

4.若方程x^2+x-1=0的两根分别为x1,x2,则x1^2+x2^2=________.

5.已知x1,x2是关于x的方程x^2+mx+m=0的两个实数根,且x1+x2=1/3,则x1*x2=___________.

6.以3,-1为根,且二次项系数为3的一元二次方程式( )

A.3x^2-2x+3=0

B.3x^2+2x-3=0

C.3x^2-6x-9=0

D.3x^2+6x-9=0

7.设x1,x2是方程2x^2-2x-1=0的两个根,利用根与系数的关系,求下列各式的值:

(1) (2x1+1)(2x2+1);

(2) (x1^2+2)(x2^2+2);

(3) x1-x2.

课后作业—基础拓展

1.(巧解题)已知 α^2+α-1=0,β^2+β-1=0,且α不等于β,则αβ+α+β的值为( )

A.2

B.-2

C.-1

D.0

2.(易错题)已知三角形两边长分别为2和9,第三边的长为一元二次方程式x^2-14x+48=0的一个根,则这个三角形的周长为( )

A.11

B.17

C.17或19

D.19

3.若关于x的一元二次方程x^2+kx+4k^2-3=0的两个实数根分别是x1,x2,且满足x1+x2=x1*x2,则k的值为( )

A.-1或3/4

B.-1

C.3/4

D.不存在

4.(一题多解)已知方程2x^2+mx-4=0的一根为-2,求它的另一条根的值.(用两种方法求解)

答案:1.-P Q

2. 5 3 第三个式子合并(X1+X2)/X1*X2=5/3 第四个式子=(X1+X2)^2-2X1*X2 =19

随堂作业—基础达标

1.-B/A C/A

2.-3/2 -2 3/4 25/4

3. 3/2

4. 3

5. -1/3

6. C

7.设x1,x2是方程2x^2-2x-1=0的两个根,利用根与系数的关系,求下列各式的值:

(1) (2x1+1)(2x2+1); 展开=2

因为X1+X2=1 X1X2=-1/2

(2) (x1^2+2)(x2^2+2); 展开=29/4

(3) x1-x2.=(X1-X2)^2开平方=X1^2+X2^2-2X1X2=

=(X1+X2)^2-4X1X2 =3开平方

课后作业—基础拓展

1.(巧解题)已知 α^2+α-1=0,β^2+β-1=0,且α不等于β,则αβ+α+β的值为(B )

A.2

B.-2

C.-1

D.0

2.(易错题)已知三角形两边长分别为2和9,第三边的长为一元二次方程式x^2-14x+48=0的一个根,则这个三角形的周长为( D)注意两边之和大于第三边 之差小于第三边 所以只能是8

A.11

B.17

C.17或19

D.19

3.若关于x的一元二次方程x^2+kx+4k^2-3=0的两个实数根分别是x1,x2,且满足x1+x2=x1*x2,则k的值为(c ) 注意:当k为-1时候 原方程的b^2-4ac小于0

A.-1或3/4

B.-1

C.3/4

D.不存在

4.(一题多解)已知方程2x^2+mx-4=0的一根为-2,求它的另一条根的值.(用两种方法求解)

1.两根之和=-M/2=-2+X2 两根之积=-2

所以X2=1 M=2

2.(-b+或者-根号下b^2-4ac)/2a=-2

解下列方程

1. (2x-1)^2-1=0

1

2. —(x+3)^2=2

2

3. x^2+2x-8=0

4. 3x^2=4x-1

5. x(3x-2)-6x^2=0

6. (2x-3)^2=x^2

一.配完全平方式(直接写答案)

1. x^2-4x+___________=(x-___________)^2

2. x^2+mx+9是一个完全平方式,则m=_____

二.配方法解一元二次方程(需要过程)

3.用配方程解一元二次方程

x^2-8x-9=0

基础达标

1用配方法解方程x^2-6x-5=0,配方得( )

A.(x-6)^2=14

B.(x-3)^=8

C.(x-3)^=14

D.(x-6)^2=41

2.将二次三项式2x^-3x+5配方,正确的是( )

3 31

A.(x- —)^2+ —

4 16

3 34

B.(x- —)^2- —

4 16

3 31

C.2(x- —)^2+ —

4 16

3 31

D.2(x- —)^2+ —

4 8

3.填空:

1. x^2+8x+______=(x+______)^2

2.2x^2-12x+______=2(x-______)^2

4.用配方法解下列方程(要过程)

1. x^+5x+3=0

2. 2x^2-x-3=0

基础扩展

1.已知(x^2+y^2)(x^2+y^2+2)-8=0,则x^2+y^2的值是( )

A.-4

B. 2

C.-1或4

D.2或4

2.(综合体)用配方法解关於x^2+2mx-n^2=0(要求写出过程)

3.(创新题)小丽和小晴是一对好朋友,但小丽近期沉迷与网络,不求上进,小晴决定不交这个朋友,就给了她一个一元二次方程说:“解这个方程吧,这就是我们的结果!”小丽解完这个方程大吃一惊,原来把这两个跟放在一起是“886”(网络语“拜拜了”)。同学你能设计一个这样的一元二次方程麼?

4.(开放探究题)设代数式2x^2+4x-3=M,用配方法说明:无论x取何值,M总不小於一定值,并求出该值(要求全过程)

-5x+x<-35

X^2+5X-6

--------- (约分)

X^2-3X+2

A^2-1 2A-A^2

-------- + ---------

A^2-2A+A A^2-A-2

X^2-Y^2 X

(---------)^2 除以 (X+Y) * (-----)^3 其中X=-1/2,Y=-1

XY X-Y

)(0.5x-1/2)(1/2x+0.5)=?(要写出计算过程)

a(x+y)-b(x+y)-x-y

(x-1/y)÷(y-1/x)

[(x+1)/(x^2-x)+4/(1-x^2)]÷[(x^2-2x-3)/(x^2+3x)](1+x)^2

(√6+√5)的2006次方 X (√6-√5)的2006次方

答案:【解下列方程】

1、(2X)^2-1=0

移项,得:(2X)^2=1

开平方,得:2X=+-1

方程两边都除以2,得:X=+-1/2

2、1/2(X+3)^2=2

方程两边都乘以2,得:(X+3)^2=4

开平方,得:X+3=+-2

方程两边都减去3,得:X=-1或-5

3、X^2+2X-8=0

左边进行因式分解,得:(X+2)(X-4)=0

X+2=0或X-4=0

X=-2或X=4

4、3X^2=4X-1

移项,得:3X^2-4X+1=0

左边进行因式分解,得:(3X-1)(X-1)=0

3X-1=0或X-1=0

X=1/3或X=1

5、X(3X-2)-6X^2=0

3X^2-2X-6X^2=0

整理,得:-3X^2-2X=0

方程两边都除以-1,得:3X^2+2X=0

左边进行因式分解,得:X(3X+2)=0

X=0或3X+2=0

X=0或X=-2/3

6、(2X-3)^2=X^2

4X^2-12X+9=X^2

方程两边都减去X^2,得:3X^2-12X+9=0

方程两边都除以3,得:X^2-4X+3=0

左边进行因式分解,得:(X-1)(X-3)=0

X-1=0或X-3=0

X=1或X=3

【一、配完全平方式】

1、 x^2-4x+4=(x-2)^2

2、 x^2+mx+9是一个完全平方式,则m=6

【二、配方法解一元二次方程】

X^2-8X-9=0

X^2-8X=9

X^2-8X+16=9+16

(X-4)^2=25

(X-4)^2=5^2

X-4=+-5

X=9或-1

【基础达标】

1、C

2、D

3、填空

① x^2+8x+16=(x+4)^2

②2x^2-12x+18=2(x-3)^2

4.用配方法解下列方程(要过程)

①X^+5X+3=0

X^+5X=-3

x^+5X+(5/2)^2=(5/2)^2-3

(X+5/2)^2=13/4

X+5/2=+-√13/2

X=(√13-5)/2或-(√13+5)/2

②2X^2-X-3=0

X^2-1/2X=3/2

X^2-1/2X+(1/4)^2=3/2+(1/4)^2

(X-1/4)^2=25/16

X-1/4=+-5/4

X=3/2或X=-1

【基础扩展】

1、B

2、X^2+2mX-n^2=0

X^2+2mX=n^2

X^2+2mX+m^2=n^2+m^2

(X+m)^2=n^2+m^2

X+m=+-√(n^2+m^2)

X=-m+-√(n^2+m^2)

3、不是很清楚题意,两个根放在一起是886三个数,是加起来还是怎么组合呢,如果是8和6的话,很简单,(X-8)(X-6)=0就可以了,展开就是X^2-14X+48=0

如果两个根是88和6,(X-88)(X-6)=0,展开就是X^2-94X+528=0

4、2X^2+4X-3=M

M=2X^2+4X-3

=2(X^2+2X)-3

=2(X^2+2X+1-1)-3

=2(X^2+2X+1)-5

=2(X+1)^2-5

无论X取何值,2(X+1)^2恒大于0,则M恒大于-5。

100道八年级分式计算题(过程及答案)

甲、乙、丙三个数字一次大1,若丙数的倒数的两倍与乙数的倒数之和与甲数的倒数的三倍相等,求甲、乙、丙

第一道:设甲=x,乙=(x+1),丙=(x+2)

2/(x+2)+1/(x+1)=3/x

2x²+x+x²+2x=x²+3x+2

x²=1

x=1或-1

∵乙的倒数=1/(x+1)

∴x≠-1

∴x=1

一个两位数的个位上的数为7,若把个位数字与十位数字对调,那么所得的两位数与原两位数的比值为8:3,求原两位数

第二道

设原两位数十位上数字为X

(10X+7)/(70+X)=3/8

3(70+X)=8(10X+7)

210+3X=80X+56

77X=154

X=2

所以原两位数为27

一艘轮船从A港口向B港口行驶,以在本航线航行时的常规速度走完全程的5分之3,此后航速减小了10海里每小时,并以此速度一直行驶到B港口。这样,本次航行减速后行驶所用的时间和未减速时行驶所用的时间相同。这艘轮船在本航线的常规速度是多少?

第三道艘轮船在本航线的常规速度是x

3/5÷x=(1-3/5)÷(x-10)

3(x-10)=2x

x=30

这艘轮船在本航线的常规速度是30海里每小时

甲乙两地相距125千米,从甲地到乙地,有人乘车,有人骑自行车,自行车比汽车早出发4小时,晚到1/2小时,已知骑车的速度与乘车的速度之比为2:5,求自行车与汽车的速度各式多少?

设自行才的速度为x千米/小时,则乘车速度为5x/2千米/小时

则乘车所所花时间为:125÷5x/2=50/x

则有方程:125/x-50/x=4.5(根据骑车和乘车的时间差)

解得x=50/3千米/小时

则汽车速度为:5/2*50/3=125/3千米/小时

某车队计划t天运送m吨货物,如果已经运送了其中的n吨,(n小于m)则运完剩下货物需要的天数t1=__,平均每天运出货物的吨数a=____

每天运货物量为:m/t

则运完剩下的货物需要天数为:(m-n)÷m/t=(m-n)*t/m

a=m/t

轮船顺水航行80km所需时间和逆水航行60km所需时间相同,已知水流的速度是3km/h,求轮船在静水中的速度

设轮船在静水中速度为x,

则顺水速度为:x+3

逆水速度为:x-3

则有:80/(x+3)=60/(x-3)

解方程得:x=21km/h

某点3月份购进一批T恤衫,进价合计是12万元。因畅销,商店又于4月份购进一批相同的T恤衫,进价合计是18.75万元,数量是3月份的1.5倍,但买件进价涨了5元,这两批T恤衫开始都以180元出售,到5月初,商店把剩下的100件打8折出售,很快售完,问商店供获毛利润(销售收入减去进价总计)多少元??

设3月份每件进价为X元,则4月份每件进价为X+5元

所以(12*10000/X)*(3/2)*(X+5)=18.75*10000

得X=120元

且总进衣服 (12*10000/X)*5/2=2500件

总收入=2400*180+100*180*80%=446400元

所以毛利润=446400-120000-187500=138900元

/2x=2/x+3

x/x+1=2x/3x+3 +1

2/x-1=4/x^2-1

5/x^2+x - 1/x^-x=0

1/2x=2/x+3

对角相乘

4x=x+3

3x=3

x=1

分式方程要检验

经检验,x=1是方程的解

x/(x+1)=2x/(3x+3)+1

两边乘3(x+1)

3x=2x+(3x+3)

3x=5x+3

2x=-3

x=-3/2

分式方程要检验

经检验,x=-3/2是方程的解

2/x-1=4/x^2-1

两边乘(x+1)(x-1)

2(x+1)=4

2x+2=4

2x=2

x=1

分式方程要检验

经检验,x=1使分母为0,是增根,舍去

所以原方程无解

5/x^2+x - 1/x^2-x=0

两边乘x(x+1)(x-1)

5(x-1)-(x+1)=0

5x-5-x-1=0

4x=6

x=3/2

分式方程要检验

经检验,x=3/2是方程的解

1/2x=2/x+3

对角相乘

4x=x+3

3x=3

x=1

分式方程要检验

经检验,x=1是方程的解

x/(x+1)=2x/(3x+3)+1

两边乘3(x+1)

3x=2x+(3x+3)

3x=5x+3

2x=-3

x=-3/2

分式方程要检验

经检验,x=-3/2是方程的解

2/x-1=4/x^2-1

两边乘(x+1)(x-1)

2(x+1)=4

2x+2=4

2x=2

x=1

分式方程要检验

经检验,x=1使分母为0,是增根,舍去

所以原方程无解

5/x^2+x - 1/x^2-x=0

两边乘x(x+1)(x-1)

5(x-1)-(x+1)=0

5x-5-x-1=0

4x=6

x=3/2

分式方程要检验

经检验,x=3/2是方程的解

5x/(3x-4)=1/(4-3x)-2

乘3x-4

5x=-1-2(3x-4)=-1-6x+8

11x=7

x=7/11

分式方程要检验

经检验

x=7/11是方程的解

1/(x+2) + 1/(x+7) = 1/(x+3) + 1/(x+6)

通分

(x+7+x+2)/(x+2)(x+7)=(x+6+x+3)/(x+3)(x+6)

(2x+9)/(x^2-9x+14)-(2x+9)/(x^2+9x+18)=0

(2x+9)[1/(x^2-9x+14)-1/(x^2+9x+18)]=0

因为x^2-9x+14不等于x^2+9x+18

所以1/(x^2-9x+14)-1/(x^2+9x+18)不等于0

所以2x+9=0

x=-9/2

分式方程要检验

经检验

x=-9/2是方程的解

7/(x^2+x)+1/(x^2-x)=6/(x^2-1)

两边同乘x(x+1)(x-1)

7(x-1)+(x+1)=6x

8x-6=6x

2x=6

x=3

分式方程要检验

经检验,x=3是方程的解

化简求值。[X-1-(8/X+1)]/[X+3/X+1] 其中X=3-根号2

[X-1-(8/X+1)]/[(X+3)/(X+1)]

={[(X-1)(X+1)-8]/(X+1)}/[(X+3)/(X+1)]

=(X^2-9)/(X+3)

=(X+3)(X-3)/(X+3)

=X-3

=-根号2

8/(4x^2-1)+(2x+3)/(1-2x)=1

8/(4x^2-1)-(2x+3)/(2x-1)=1

8/(4x^2-1)-(2x+3)(2x+1)/(2x-1)(2x+1)=1

[8-(2x+3)(2x+1)]/(4x^2-1)=1

8-(4x^2+8x+3)=(4x^2-1)

8x^2+8x-6=0

4x^2+4x-3=0

(2x+3)(2x-1)=0

x1=-3/2

x2=1/2

代入检验,x=1/2使得分母1-2x和4x^2-1=0。舍去

所以原方程解:x=-3/2

(x+1)/(x+2)+(x+6)/(x+7)=(x+2)/(x+3)+(x+5)/(x+6)

1-1/(x+2)+1-1/(x+7)=1-1/(x+3)+1-1/(x+6)

-1/(x+2)-1/(x+7)=-1/(x+3)-1/(x+6)

1/(x+2)+1/(x+7)=1/(x+3)+1/(x+6)

1/(x+2)-1/(x+3)=1/(x+6)-1/(x+7)

(x+3-(x+2))/(x+2)(x+3)=(x+7-(x+6))/(x+6)(x+7)

1/(x+2)(x+3)=1/(x+6)(x+7)

(x+2)(x+3)=(x+6)(x+7)

x^2+5x+6=x^2+13x+42

8x=-36

x=-9/2

经检验,x=-9/2是方程的根。

(2-x)/(x-3)+1/(3-x)=1

(2-x)/(x-3)-1/(x-3)=1

(2-x-1)/(x-3)=1

1-x=x-3

x=2

分式方程要检验

经检验,x=2是方程的根

猜你喜欢